Trade_Predictor_Project Tailwind Templates

Trade_predictor_project

An AI-powered trade prediction system using machine learning, technical analysis, and time series models. Built with FastAPI, React, and Tailwind CSS.

๐Ÿง  NeuralAditya - Trade Prediction Project

Build Status Python Node License

Trade Prediction Project is an advanced and modular trade prediction system that combines state-of-the-art machine learning and signal processing techniques to provide highly accurate stock trend forecasts.

Built with a powerful FastAPI backend and a modern Vite + React + TailwindCSS frontend, this full-stack application is optimized for real-time interaction and predictive insight delivery.

๐Ÿ” Core Features

  • ๐Ÿ”— FastAPI Backend: Lightweight and high-performance API for fast data processing and model predictions.
  • โš›๏ธ React + Vite Frontend: Ultra-fast UI built with Vite, React, TailwindCSS, and ShadCN.
  • ๐Ÿ“ˆ ML Algorithms: Random Forest, ARIMA, and Markov Switching models for robust predictions.
  • ๐Ÿ”ง Fourier Transform Analysis: Extracts frequency-domain features to capture cyclic trends in data.
  • ๐ŸŒŠ Wavelet Transform: Multi-resolution analysis to uncover short-term vs long-term volatility patterns.
  • ๐Ÿ“ก Kalman Filter: Smooths noisy market signals and estimates hidden state trends.
  • ๐Ÿ“ Topological Data Analysis (TDA): Captures shape and structure of time-series data using persistence diagrams.
  • ๐Ÿงฎ Technical Indicators: Includes RSI, MACD, EMA, Bollinger Bands, and more.
  • ๐ŸŽฏ Dimensionality Reduction: Uses PCA and t-SNE for compressing and visualizing high-dimensional features.
  • ๐Ÿ–ผ๏ธ Live Graphs: UI displays prediction results and historical performance in interactive charts.
  • ๐Ÿงพ CSV Upload & Visualization: Upload any stock OHLCV CSV and view results instantly.

โšก Use Cases

  • Short-term & long-term stock trend forecasting
  • Backtesting and model evaluation
  • Educational tool for data science and trading students
  • Research into hybrid models and multi-signal strategies

๐Ÿ“ธ Frontend Screenshot

Trade Predictor UI

๐Ÿ“ Project Structure

Trade_Predictor_Project/
โ”‚
โ”œโ”€โ”€ backend/
โ”‚   โ”œโ”€โ”€ api/
โ”‚   โ”‚   โ””โ”€โ”€ predict.py              # Main prediction endpoint logic
โ”‚   โ”œโ”€โ”€ models/
โ”‚   โ”‚   โ””โ”€โ”€ train_model.py          # (Optional) Re-train ML models
โ”‚   โ”œโ”€โ”€ utils/
โ”‚   โ”‚   โ””โ”€โ”€ helpers.py              # (Optional) Any helper functions
โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”œโ”€โ”€ main.py                     # FastAPI entrypoint
โ”‚   โ””โ”€โ”€ requirements.txt           # Backend dependencies
โ”‚
โ”œโ”€โ”€ frontend/
โ”‚   โ”œโ”€โ”€ src/
โ”‚   โ”‚   โ””โ”€โ”€ TradePredictApp.tsx     # UI for file upload and results
โ”‚   โ”œโ”€โ”€ public/
โ”‚   โ”‚   โ””โ”€โ”€ screenshot.png          # UI screenshot image
โ”‚   โ”œโ”€โ”€ package.json
โ”‚   โ”œโ”€โ”€ postcss.config.js
โ”‚   โ”œโ”€โ”€ tailwind.config.js
โ”‚   โ”œโ”€โ”€ vite.config.ts
โ”‚   โ””โ”€โ”€ tsconfig.json
โ”‚
โ”œโ”€โ”€ docker-compose.yml
โ”œโ”€โ”€ README.md
โ””โ”€โ”€ .gitignore

๐Ÿš€ Getting Started

๐Ÿง  Backend (FastAPI)

cd backend
python -m venv venv
source venv/bin/activate         # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn main:app --reload

Backend will be running at: http://localhost:8000


๐Ÿ’ป Frontend (Vite + React)

cd frontend
npm install
npm run dev

Frontend will be running at: http://localhost:5173

Ensure the backend is also running for full functionality.


๐Ÿ“ค API Endpoint

POST /api/predict

Upload a .csv file with the following required columns:

Open, High, Low, Close, Volume

โœ… Example Response

{
  "accuracy": 0.8123,
  "confusion_matrix": [[100, 20], [15, 80]]
}

๐Ÿณ Docker (Run Full Stack)

docker-compose up --build

Make sure Docker is installed and running before executing.


โœ… Requirements

  • Python 3.10+
  • Node.js 18+
  • Docker (optional)

๐Ÿ“„ License

MIT ยฉ 2025 NeuralAditya

Top categories

Loading Svelte Themes