Trade Prediction Project is an advanced and modular trade prediction system that combines state-of-the-art machine learning and signal processing techniques to provide highly accurate stock trend forecasts.
Built with a powerful FastAPI backend and a modern Vite + React + TailwindCSS frontend, this full-stack application is optimized for real-time interaction and predictive insight delivery.
Trade_Predictor_Project/
โ
โโโ backend/
โ โโโ api/
โ โ โโโ predict.py # Main prediction endpoint logic
โ โโโ models/
โ โ โโโ train_model.py # (Optional) Re-train ML models
โ โโโ utils/
โ โ โโโ helpers.py # (Optional) Any helper functions
โ โโโ __init__.py
โ โโโ main.py # FastAPI entrypoint
โ โโโ requirements.txt # Backend dependencies
โ
โโโ frontend/
โ โโโ src/
โ โ โโโ TradePredictApp.tsx # UI for file upload and results
โ โโโ public/
โ โ โโโ screenshot.png # UI screenshot image
โ โโโ package.json
โ โโโ postcss.config.js
โ โโโ tailwind.config.js
โ โโโ vite.config.ts
โ โโโ tsconfig.json
โ
โโโ docker-compose.yml
โโโ README.md
โโโ .gitignore
cd backend
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
uvicorn main:app --reload
Backend will be running at: http://localhost:8000
cd frontend
npm install
npm run dev
Frontend will be running at: http://localhost:5173
Ensure the backend is also running for full functionality.
POST /api/predict
Upload a .csv
file with the following required columns:
Open, High, Low, Close, Volume
{
"accuracy": 0.8123,
"confusion_matrix": [[100, 20], [15, 80]]
}
docker-compose up --build
Make sure Docker is installed and running before executing.
MIT ยฉ 2025 NeuralAditya