Prepgenie Tailwind Templates

Prepgenie

An AI mock interview platform built using next.js, tailwind css, shadcn ui, vapi (ai voice agent), firebase auth & gemini.

PrepGenie: AI-Powered Interview Preparation Platform

🚀 Project Overview

PrepGenie is an innovative platform that empowers job seekers to conduct AI-powered mock interviews, leveraging cutting-edge technologies to simulate real-world interview experiences and provide personalized feedback.

🌟 Key Features

  • AI-Powered Voice Interviews: Conduct realistic mock interviews using VAPI's voice agent technology
  • Intelligent Feedback: Powered by Gemini 2.0 Flash AI for comprehensive interview analysis
  • Secure Authentication: Robust user management with Firebase Authentication
  • Performance Tracking: Store and track interview results using Firebase Firestore

🛠 Tech Stack

  • Frontend: Next.js 14
  • Language: TypeScript
  • AI Services:
    • VAPI (Voice AI Agent)
    • Gemini 2.0 Flash (Google AI)
  • Backend & Authentication: Firebase
    • Firestore Database
    • Firebase Authentication
  • Styling: Tailwind CSS
  • State Management: React Hooks

📦 Prerequisites

  • Node.js (v18+ recommended)
  • npm or Yarn
  • Firebase Account
  • Gemini AI API Key
  • VAPI Account

🔧 Installation

  1. Clone the repository
git clone https://github.com/null-kaustubh/prepgenie.git
cd prepgenie
  1. Install dependencies
npm install
# or
yarn install
  1. Set up environment variables Create a .env.local file in the root directory with the following variables:
# Firebase Configuration
NEXT_PUBLIC_FIREBASE_API_KEY=your_firebase_api_key
NEXT_PUBLIC_FIREBASE_AUTH_DOMAIN=your_firebase_auth_domain
NEXT_PUBLIC_FIREBASE_PROJECT_ID=your_firebase_project_id

# Gemini AI Configuration
NEXT_PUBLIC_GEMINI_API_KEY=your_gemini_api_key

# VAPI Configuration
NEXT_PUBLIC_VAPI_API_KEY=your_vapi_api_key
  1. Run the development server
npm run dev
# or
yarn dev

🌐 Deployment

Recommended platforms:

  • Vercel (Optimal for Next.js)
  • Netlify
  • Heroku

Deployment steps:

  1. Push your code to GitHub
  2. Connect your repository to Vercel
  3. Set environment variables in the deployment platform

📝 Key Components

Authentication

  • User registration and login
  • OAuth support via Firebase
  • Secure route protection

Interview Workflow

  1. Select Interview Type

    • Technical Interviews
    • Behavioral Interviews
    • Role-Specific Scenarios
  2. AI Voice Interview

    • Real-time voice interaction
    • Adaptive questioning
    • Natural language processing
  3. Feedback Generation

    • Detailed performance analysis
    • Strengths and improvement areas
    • Suggested resources

🔒 Security Considerations

  • Firebase Security Rules
  • Input validation
  • Rate limiting
  • Secure API key management

🚧 Future Roadmap

  • Multi-language support
  • More interview domains
  • Advanced analytics dashboard
  • Machine learning-based personalized coaching
  • Integration with job application platforms
  • Customizable interview scenarios

💡 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📊 Performance Optimization

  • Server-side rendering (SSR)
  • Incremental Static Regeneration (ISR)
  • Lazy loading of components
  • Efficient state management

🆘 Troubleshooting

  • Ensure all API keys are correctly configured
  • Check Firebase project settings
  • Verify VAPI and Gemini AI integrations
  • Review browser console for any errors

🤝 Contact

Kaustubh Sankhe - [kaustubhs2903@gmail.com]

Project Link: https://github.com/null-kaustubh/prepgenie


Top categories

Loading Svelte Themes